Combinatorial Knot Contact Homology and Transverse Knots
نویسنده
چکیده
We give a combinatorial treatment of transverse homology, a new invariant of transverse knots that is an extension of knot contact homology. The theory comes in several flavors, including one that is an invariant of topological knots and produces a three-variable knot polynomial related to the A-polynomial. We provide a number of computations of transverse homology that demonstrate its effectiveness in distinguishing transverse knots, including knots that cannot be distinguished by the Heegaard Floer transverse invariants or other previous invariants.
منابع مشابه
Filtrations on the Knot Contact Homology of Transverse Knots
We construct a new invariant of transverse links in the standard contact structure on R3. This invariant is a doubly filtered version of the knot contact homology differential graded algebra (DGA) of the link, see [4], [13]. Here the knot contact homology of a link in R3 is the Legendrian contact homology DGA of its conormal lift into the unit cotangent bundle S∗R3 of R3, and the filtrations ar...
متن کاملA Note on the Knot Floer Homology of Fibered Knots
We prove that the knot Floer homology of a fibered knot is nontrivial in its nextto-top Alexander grading. Immediate applications include new proofs of Krcatovich’s result that knots with L-space surgeries are prime and Hedden and Watson’s result that the rank of knot Floer homology detects the trefoil among knots in the 3-sphere. We also generalize the latter result, proving a similar theorem ...
متن کاملLegendrian knots, transverse knotsand combinatorial Floer homology
Manolescu, Ozsváth and Sarkar gave [9] an explicit description of knot Floer homology for a knot in the three-sphere as the homology groups of a chain complex CK which is described in terms of the combinatorics of a grid diagram for a knot. In fact, the constructions of [9] are done with coefficients in Z=2Z; a lift of these constructions to coefficients in Z is given by Manolescu and the autho...
متن کاملTransverse Knots Distinguished by Knot Floer Homology
We exhibit pairs of transverse knots with the same self-linking number that are not transversely isotopic, using the recently defined knot Floer homology invariant for transverse knots and some algebraic refinements.
متن کاملKnot and Braid Invariants from Contact Homology I
We introduce topological invariants of knots and braid conjugacy classes, in the form of differential graded algebras, and present an explicit combinatorial formulation for these invariants. The algebras conjecturally give the relative contact homology of certain Legendrian tori in five-dimensional contact manifolds. We present several computations and derive a relation between the knot invaria...
متن کامل